

SMD Communication Crystals

Acceleration tolerant SMD AT-cut quartz crystal in ceramic package with 6.0 mm \times 3.5 mm footprint

Product description

Very small SMD AT-cut quartz crystal specifically designed to operate in vibration prone environments. Parts are able to survive acceleration 20,000G and higher with minimal parameter change. Vibration G-sensitivity significantly reduced. True SMD style, ceramic package with metal lid, seamed sealed. The product is supplied on tape and reel.

Value

10 to 30

±1 max

±4 to 40

-55 to 95

0.2 to 1

1 max

±1 max

±5 max

-3 to 0

0.2 to 0.8

±10 to 20

Unit

MHz

ppm

ppm

ppm

°C

ppm

ppb

ppm

ppm

ppb/g

ppm

Applications

- GPS
- Agriculture
- Avionics
- Guidance
- Navigation
- Military
- Other

Features

- G-sensitivity down to 0.2ppb/G
- · Low aging
- Up to 50,000G acceleration event survival

SPECIFICATION REFERENCES

· Very good short term stability

Parameter

Model description

Short term stability

Long term stability

Long term stability

Frequency offset after

acceleration event

G-Sensitivity

Specifications

1.0

Line

1.1

2.7

2.8

2.9

2.10

2.11

1.2 1.3 1.4	RoHS compliant Reference number Rakon part number	Yes				
2.0	FREQUENCY CHARACTERISTICS					
Line	Parameter	Test Condition				
2.1	Frequency					
2.2	Calibration tolerance	Frequency at 25°C ±2°C and specified load capacitance				
2.3	Reflow shift	Two consecutive reflows as per attached profile after 4 hours recovery at 25°				
2.4	Frequency stability over temperature	Referenced to frequency reading at 25°C and the specified load capacitance				
2.5	Temperature range	Operating temperature				
2.6	Frequency perturbations	Peak-to-peak deviation from the frequency vs. temperature 5th order curve fit. Minimum of 1 frequency reading every 3°C, over				

the operating temperature range

Frequency drift over 1 year

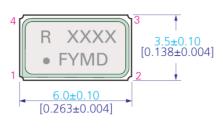
Frequency drift over 10 years

recovery time of 100ms (Note 1)

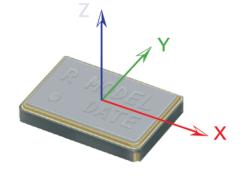
Root Allan Variance for 1 second Tau

Description

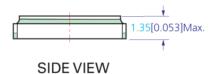
RGX-3

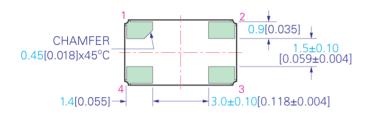

Gamma vector of all three axes from 30Hz to 1500Hz. Values as

low as 0.2ppb/G available depending on design (Note 1)


20,000G/2ms acceleration event in the z axis. Theoretical

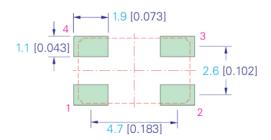
Drawing Name: RGX-3 Model Drawing


MODEL OUTLINE

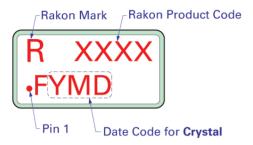


TOP VIEW

MODEL COORDINATE ORIENTATION



BOTTOM VIEW


PIN CONNECTIONS 1 CRYSTAL 2 GND 3 CRYSTAL 4 GND


RECOMMENDED PAD LAYOUT - TOP VIEW

Drawing Name: RSX-6, RS(G)X-5, RS(G)X-3 Series Lid Marking

Marking:

Example:

Y - Year Code

Code	Year	Code	Year	Code	Year
0	2000	Α	2010	N	2023
1	2001	В	2011	0	2024
2	2002	С	2012	P	2025
3	2003	D	2013	Q	2026
4	2004	E	2014	R	2027
5	2005	F	2015	S	2028
6	2006	G	2016	T	2029
7	2007	Н	2017	U	2030
8	2008	1	2018	V	2031
9	2009	J	2019	W	2032
		K	2020	X	2033
		L	2021	Y	2034
		M	2022	Z	2035

M - Month Code

Code	Month		
1	January		
2	February		
3	March		
4	April		
5	May		
6	June		
7	July		
8	August		
9	September		
Α	October		
В	November		
С	December		

D - Date Code

Code	Date	Code	Date	Code	Date
1	1st	E	14th	R	27th
2	2nd	F	15th	S	28th
3	3rd	G	16th	T	29th
4	4th	Н	17th	U	30th
5	5th	1	18th	V	31th
6	6th	J	19th		
7	7th	K	20th		
8	8th	L	21st		
9	9th	M	22nd		
Α	10th	N	23rd		
В	11th	0	24th		
С	12th	P	25th		
D	13th	Q	26th		

Note: 1 MUST BE DIFFERENT TO I.

TITLE: RSX-6, RS(G)X-5, RS(G)X-3 SERIES LID MARKING FILENAME: CAT190

RELATED DRAWINGS:

REVISION: D
DATE: 02-Jul-10
SCALE: NTS
Millimeters [inch]

