IT2200K

SMD Temperature Compensated Crystal Oscillators

SMD TCXO using analogue ASIC for compensation and an optional Enable/Disable pin for efficient power management.

Product description

The I(V)T2200K employs an analogue ASIC for the oscillator and a high order temperature compensation circuit in a 2.5 x 2.0 mm size package. The device can be placed in power down mode through a single input pin. During standard operation, power consumption is minimized by operating down to a supply voltage of 1.8V. The I(V)T2200K's high stability, low power consumption, small footprint and powerful compensation method makes it a TCXO ideally suited for demanding GPS mobile applications.

Applications

- GPS
- Smartphone
- PND
- Consumer
- Communications
- Wi-Fi
- WiMAX/W-LAN

Features

- Frequency slope and perturbation specifications can be customized to the application requirement
- Excellent phase noise performance
- Standard temperature stability choices are ±0.5ppm, ±1ppm, ±1.5ppm and ±2.5ppm over wide temperature ranges

Specifications

1.0 SPECIFICATION REFERENCES

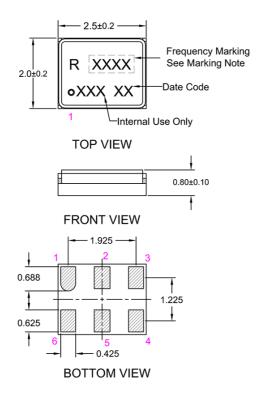
Line Parameter

Description IT2200K / IVT2200K / IT2200KP

Yes

- 1.1 Model description
 1.2 RoHS compliant
- 1.3 Reference number
- 1.4 Rakon part number

2.0 FREQUENCY CHARACTERISTICS

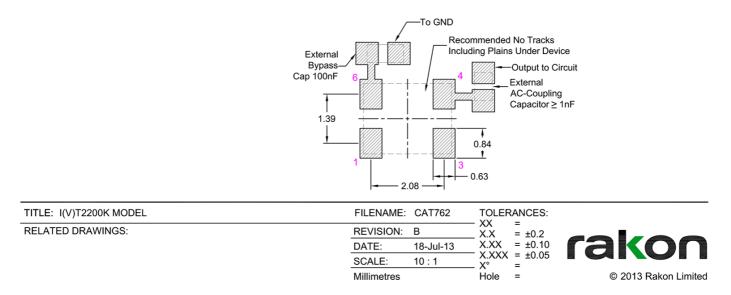

Line	Parameter	Test Condition	Value	Unit
2.1	Frequency		10 to 52	MHz
2.2	Frequency calibration	Offset from nominal frequency measured at 25°C±2°C	±1 max	ppm
2.3	Reflow shift	Two consecutive reflows as per attached profile after 1 hour recovery at 25°C	±1 max	ppm
2.4	Temperature range	The operating temperature range over which the frequency stability is measured	-40 to 85	°C
2.5	Frequency stability over temperature	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range. Control voltage set to midpoint of control voltage (Note 1)	±0.5 to 2.5	ppm
2.6	Frequency slope	Minimum of 1 frequency reading every 2°C over the operating temperature range (Note 1)	0.1 to 1	ppm/°C
2.7	Static temperature hysteresis	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C	0.6 max	ppm
2.8	Sensitivity to supply voltage variations	Supply voltage varied $\pm 5\%$ at $25^{\circ}C$	±0.1 max	ppm
2.9	Sensitivity to load variations	±10% load change at 25°C (Note 2)	±0.2 max	ppm
2.10	Long term stability	Frequency drift over 1 year at 25°C	±1 max	ppm

rakon

CEOB2B晶振平台-全球最专业的晶振在线采购查询平台http://www.crystal95.com

MODEL OUTLINE

MARKING NOTE


[XXXX] = Frequency in MHz. e.g.: 8A00 = 8.00MHz, 19A2 = 19.2MHz, 100A = 100MHz (A = IT/IVT2200K)

PIN CONNECTIONS

Pin	6 PAD			
FIII	IT22K	IVT22K	IT22KP	
1	NC / GND	VCO	Enable / Disable*	
2	NC / GND	NC / GND	NC / GND	
3	GND	GND	GND	
4	OUTPUT	OUTPUT	OUTPUT	
5	NC / GND	NC / GND	NC / GND	
6	VCC	VCC	VCC	

NOTE: * Connect to VCC or floating to enable TCXO

RECOMMENDED 4 PAD LAYOUT - TOP VIEW

